Axonal Regeneration after Sciatic Nerve Lesion Is Delayed but Complete in GFAP- and Vimentin-Deficient Mice

نویسندگان

  • Alexander Berg
  • Johan Zelano
  • Marcela Pekna
  • Ulrika Wilhelmsson
  • Milos Pekny
  • Staffan Cullheim
چکیده

Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP(-/-)Vim(-/-) mice. After sciatic nerve crush in GFAP(-/-)Vim(-/-) mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage.

Axonal loss causes disabling and permanent deficits in many peripheral neuropathies, and may result from inefficient nerve regeneration due to a defective relationship between Schwann cells, axons and the extracellular matrix. These interactions are mediated by surface receptors and transduced by cytoskeletal molecules. We investigated whether peripheral nerve regeneration is perturbed in mice ...

متن کامل

Transplantation of Olfactory Mucosa Improve Functional Recovery and Axonal Regeneration Following Sciatic Nerve Repair in Rats

Background: Olfactory ensheathing glia (OEG) has been shown to have a neuroprotective effect after being transplanted in rats with spinal cord injury. This study was conducted to determine the possible beneficial results of olfactory mucosa transplantation (OMT) which is a source of OEG on functional recovery and axonal regeneration after transection of the sciatic nerve. Methods: In this study...

متن کامل

Peripheral nerve regeneration is delayed in neuropilin 2-deficient mice.

Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling syst...

متن کامل

Age-Dependent Regeneration by Using Electromyographical Study Foliowing Sciatic Nerve Injury in Rat

Purpose: There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Axonal regeneration is relation to various factors. In this investigation we decided to evaluate the effects of nerve regeneration age-dependent on injured rat sciatic nerv. Materials and Methods: For this study, the right sciatic nerve of...

متن کامل

Nogo-C is sufficient to delay nerve regeneration.

Axonal regeneration succeeds in the peripheral but not central nervous system of adult mammals. Peripheral clearance of myelin coupled with selective CNS expression of axon growth inhibitors, such as Nogo, may account for this reparative disparity. To assess the sufficiency of Nogo for limiting axonal regeneration, we generated transgenic mice expressing Nogo-C in peripheral Schwann cells. Nogo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013